When something changes its velocity	The rate of change of velocity of a moving object. Can result from a change in speed and/or a change in direction	On surface of earth, value is $9.8 \mathrm{~ms}^{2}$; increases nearer the poles, decreases with altitude and depth inside the earth	Total displacement divided by the total time taken
Accelerate	Acceleration	Acceleration due to gravity	Average velocity
The imaginary line about which a planet or other object rotates	When a number of forces act on a body, and the resultant force is zero	Force required to keep an object moving in a circle	Momentum after minus momentum before
Axis	Balanced Forces	Centripetal force	Change in momentum
Velocity after minus velocity before	The motion of a body along a circular path	An orbit that is circular	Objects hitting each other
Change in velocity	Circular Motion	Circular orbit	Collision
Sum of masses involved	When energy is transformed from one type of energy into another, the total energy before and after are always the same	Mass, including single atoms, is neither created nor destroyed in a chemical reaction (not measurably anyway!)	The total momentum of a group of a closed system remains constant in the absence of external forces
Combined mass	Conservation of Energy	Conservation of mass	Conservation of momentum

Speed that stays the same	Negative acceleration	The change in the position of an object in a particular direction	The actual length of the path traveled by a body irrespective of the direction is called the distance traveled
Constant speed	Deceleration	Displacement	Distance
Set of formulas used to describe motion mathematically	Forces change the state of rest or of uniform motion, the direction of motion, or the shape and size of a body	The force with which two objects attract each other because of their masses	The motion of a body towards the earth when no other force except weight acts on it
Equations of motion	Force	Force of gravitation	Free fall
The force that resists the motion of one surface relative to another with which it is in contact	The Universal Gravitational constant G which appears in the equation for Newton's law of gravitation	Force of attraction between two objects due to their mass	A circle that involves no gain or loss in gravitational potential energy
Friction	Gravitational constant G	Gravity	Horizontal circle
Change in momentum caused by an external force	Collision where kinetic energy is not conserved (some energy is converted to sound or heat etc.)	The property of matter that causes it to resist any change in its state of rest or of uniform motion	Energy possessed by a body by the virtue of its motion
Impulse	Inelastic collision	Inertia	Kinetic Energy

\(\left.$$
\begin{array}{|c|c|c|c|}\hline \text { The quantity of matter } \\
\text { contained in a body It } \\
\text { remains the same } \\
\text { everywhere }\end{array}
$$ \quad $$
\begin{array}{c}\text { Anything that } \\
\text { occupies space and } \\
\text { has mass }\end{array}
$$ \quad $$
\begin{array}{c}\text { The product of a } \\
\text { body's mass and } \\
\text { velocity }\end{array}
$$ \quad \begin{array}{c}Manner of how a \\

body moves\end{array}\right]\)| Mass | Matter | Momentum |
| :---: | :---: | :---: |

For a particular vibration, the time for one complete oscillation	Point upon which an object turns or rotates	The energy of a body due to its height or the energy of a body due to its shape	An object thrown into space either horizontally and under the action of gravity
Period	Pivot	Potential Energy	Projectile

Turning force (not applied through the centre of mass)	When a number of forces act on a body and the resultant force is not zero	When the velocity of a body increases by equal amounts in equal intervals of time	The motion of an object in a circular path with uniform speed
Torque	Unbalanced forces	Uniform Acceleration	Uniform Circular Motion
When a body travels equal distances in equal intervals of time then it is said to have uniform speed.	When a body travels along a straight line in particular direction and covers equal distances in equal intervals of time	Numerically add vectors by use of Pythagoras's theorem to calculate magnitude and direction	A vector (e.g. Force) separated into vertical and horizontal components
Uniform Speed	Uniform Velocity	Vector addition	Vector components
Scale diagram to show magnitude and direction of vectors	A quantity, which needs both magnitude and direction to describe it	Distance traveled by a body in a particular direction per unit time	Circular motion where the speed, as well as the direction of the object, is constantly changing
Vector diagram	Vector Quantity	Velocity	Vertical circle
Vector quantities can be separated into two components at 90° to each other - horizontal and vertical	The force with which a body is attracted towards the center of the earth	Apparent loss of weight of a body in free-fall	Work is done when force acting on a body moves it
Vertical component	Weight	Weightless	Work

[^0]
[^0]: No Brain Too Small • PHYSICS \mathbb{Z}

