Physics 3.4 : Demonstrate understanding of mechanical systems

Level 3 Credits 6

This achievement standard involves knowledge and understanding of phenomena, concepts, principles and/or relationships related to translational; circular and rotational; and simple harmonic motion; and the use of appropriate methods to solve related problems.

Translational Motion
Centre of mass (1 and 2 dimensions); conservation of momentum and impulse (2 dimensions only).

Circular and Rotational Motion
Velocity and acceleration of, and resultant force on, objects moving in a circle under the influence of 2 or more forces, e.g. banked corners, vertical circles; Newton's Law of gravitation, satellite motion.

Rotational motion with constant angular speed and with constant angular acceleration; torque; rotational inertia; angular momentum; rotational kinetic energy; conservation of angular momentum; conservation of energy.

Simple Harmonic Motion (SHM)

Displacement; velocity; acceleration; time and frequency of a particle undergoing SHM; forced SHM; resonance; the reference circle; phasors; conservation of energy.

Relationships:

$$
\begin{array}{lll}
d=r \theta & v=r \omega & a=r \alpha \\
\alpha=\frac{\Delta \omega}{\Delta t} & \omega=\frac{\Delta \theta}{\Delta t} & \\
\omega_{f}=\omega_{i}+\alpha t & \omega=2 \pi f & E_{\text {K(ROT) }}=\frac{1}{2} \mathrm{I} \omega^{2} \\
\tau=\mathrm{I} \alpha & \theta=\frac{\left(\omega_{i}+\omega_{f}\right)}{2} t & \omega_{f}{ }^{2}=\omega_{i}{ }^{2}+2 \alpha \theta \\
\theta & =\omega_{i} t+\frac{1}{2} \alpha t^{2} & \\
L=m v r & L=\mathrm{I} \omega \\
T=2 \pi \sqrt{\frac{l}{g}} & F_{g}=\frac{G M m}{r^{2}} & \\
y=A \sin \omega t & T & =2 \pi \sqrt{\frac{m}{k}} \\
& v & =A \omega \cos \omega t
\end{array} \quad a=-A \omega^{2} \sin \omega t
$$

$y=A \cos \omega t \quad v=-A \omega \sin \omega t \quad a=-A \omega^{2} \cos \omega t$

MECHANICS: translation motion

By the end of this unit students should be able to:
\square Describe translational motion using graphs, equations and words.
\square Use free-body force diagrams to find resultant forces
\square Calculate the centre of mass for a multibody system
\square Analyse interactions by applying the idea of centre of mass.
\square Describe the conservation of momentum with reference to the motion of the centre of mass of a system, when the motion of the particles is in one dimension
\square Apply the principle of conservation of linear momentum in one and two dimensions including the use of vectors
\square Understand the relationship between rate of change of momentum and force in one and two dimensions (Impulse)

MECHANICS: rotational motion

By the end of this unit students should be able to:
\square Understand Newton's laws of Gravitation, including the force on a satellite in a circular orbit

वAnalyse circular motion in terms of centripetal force, centripetal acceleration, period and frequency
\square Define a gravitational field in terms of the force on a unit mass.
\square Use Newton's law of Universal Gravitation to analyse the motion of satellites in circular orbit
\square Analyse the Velocity and acceleration of , and resultant force on, objects orbiting under the influence of two or more forces (eg. Conical pendulums, banked corners)
\square Describe and analyse rotational motion with constant angular acceleration and constant angular speed using angular quantities and rotational Kinematic equations
\square Use rotational motion equations to solve problems (with constant angular acceleration)
\square Describe torque as two equal and opposite forces producing rotational motion.
\square Define Torque, rotational inertia, and the relationship between torque and angular acceleration
\square Apply the principle of conservation of angular momentum to systems with no external torque.
\square Apply the principle of conservation of energy to situations involving rotations to include rotational kinetic energy, conservation of gravitational potential energy, and rotational and translational kinetic energy.

MECHANICS: Simple harmonic motion

By the end of this unit students should be able to:
\square Investigate the features of Simple Harmonic Motion
\square Describe Motion with a restoring force or torque proportional to displacement from an equilibrium position in systems such as mass-spring, pendulums, buoys
\square Apply the equations describing SHM to calculate unknown physical quantities for displacement, velocity, acceleration and frequency of a particle undergoing simple harmonic motion.
\square Use equations of motion for cases when the displacement at time zero is either maximum or zero (equilibrium position).
\square Analyse real life situations of SHM including the use of the reference circle to analyse simple harmonic motion.
\square Identify the kinetic and potential energies present at various positions/times of SHM (Conservation of energy)
\square Understand the factors that determine resonant frequencies in physical systems.
\square Describe situations involving Damped and forced oscillations; resonance

